
What's new in ir3
Job Noorman

XDC'25

1

What is ir3?
Mesa compiler backend for Qualcomm Adreno GPUs
Used by Freedreno (Gallium) and Turnip (Vulkan)
Supports Adreno a3xx - a7xx
Intermediate Representation 3 (because a3xx)

2

Adreno ISA
SIMT, 64/128 threads per wave
Scalar ISA
Load store ISA
Native 16/32-bit FP/int ALUs/SFUs
Arbitrary branching and predication

3

Adreno ISA: execution units
Vector ALU (simple ops)

Fixed latency, managed by compiler (nop insertion)
Special function unit (sqrt , rcp ,...)

Short variable latency, managed by compiler ((ss) sync flags)
Scalar ALU

Uniform ops (mostly preamble)
No latency, sync when reading from vector ALU
Same opcodes as Vector ALU, selected based on register class

Texture processor, load/store unit
Long variable latency, managed by compiler ((sy) sync flags)

4

Adreno ISA: register classes
48×4 32-bit "full" (r0.x ,...) and 16-bit "half" (hr0.x,...) GPRs

GPR space shared among waves, limits parallelism
a6xx+: overlap with bottom half of "full" registers

8×4 32-bit "shared" uniform GPRs, (r48.x ,...)
1-bit predicate registers (p0.[xyzw]) for branching
Constant registers (c0.x ,...)

Uniform memory, addressable like registers by many instructions
Lowered UBOs, push constants, driver params,...

5

Compilation flow
1. Generate and optimize NIR

2. Instruction selection (SSA)

Create CFG

3. Optimizations

copy propagation, conversion folding, DCE,...

4. Pre-RA scheduling (register pressure)

5. RA (out-of-SSA)

6. Post-RA scheduling (latency)

7. Legalization

8. Assembly (isaspec)

6

What is new in ir3
Status: most ISA features up to a7xx have been implemented
New a6xx features

Scalar ALU and early preamble
Predicate registers and predication
Full (e.g., clustered) and improved (i.e., native) subgroup ops
64-bit integers
Repeated instructions (simulated vector ops)

New a7xx features
64-bit atomics
8-bit storage/integers
Ray tracing
Aliased tex srcs
Aliased render targets

7

Repeated instructions
Simulated vector instructions

32x4 %3 = iadd %1, %2.xxxx

(rpt3)add.u r3.x, (r)r1.x, r2.x

add.u r3.x, r1.x, r2.x

add.u r3.y, r1.y, r2.x

add.u r3.z, r1.z, r2.x

add.u r3.w, r1.w, r2.x

8

Repeated instructions:
implementation

1. Ingest vectorized NIR (nir_opt_vectorize)

2. Emit vector ops as scalar ops linked together in "repeat groups"

3. For now: completely ignore in optimizations/scheduling

Assumption: code size less important than other optimizations

4. Pre-RA: create merge sets for repeat groups

Try to allocate consecutive regs but don't force it

5. Post-RA: merge instructions in repeat groups if assigned regs allow it

9

Aliased tex srcs: problem
Texture ops need large number of consecutive GPRs
May lead to fragmentation of the register file
Increases register pressure even for constants/immediates
Fragmentation may lead to moves

r0 = textureLod(vec2(x, 0), lod)

; x in r1.z, lod in r1.x

; saml first src must have {x, y, lod} in consecutive regs

mov r1.w, 0

mov r2.x, r1.w

; make sure regs are written

(rpt1)nop

saml (xyzw)r0.x, r1.z

10

Register aliases: solution
a7xx introduced "alias registers" to remap registers

; x in r1.z, lod in r1.x

; saml first src must have {x, y, lod} in consecutive regs

alias.tex r1.w, 0

alias.tex r2.x, r1.w

saml (xyzw)r0.x, r1.z

Advantages over moves:
Aliases do not occupy GPR space (MaxWaves+, MOVs-)
Do not need synchronization (NOPs-)
Can reference constants/immediates (MOVs-, GPRs-)

11

ir3 tooling: compiler flags
IR3_SHADER_DEBUG (environment variable)

disasm , optmsgs (pass results), ramsgs (RA), schedmsgs (scheduling),...
Sync issues
fullsync ((ss)(sy)nop everywhere)
fullnop ((rpt5)nop everywhere)

Disabling features: noaliastex , noearlypreamble ,...

12

ir3 tooling: shader overrides
IR3_SHADER_OVERRIDE_PATH (environment variable)

After shader compilation:
If $IR3_SHADER_OVERRIDE_PATH/$shader_id.asm exists
Assemble and replace shader binary

Allows fast iteration for codegen bug hunting/fixing
Custom assembler:

Hand coded flex/bison
Full ir3 support
Helpful macros (e.g., @fullsync{start,end})

13

ir3 tooling: computerator
Use assembler to generate compute shader
Set up minimal GPU state to dispatch
Extremely useful for reverse engineering

@localsize 4, 1, 1

@buf 4 1, 2, 3, 4

@invocationid(r0.x)

ldib.b.untyped.1d.u32.4.imm r1.x, r0.x, 0

(sy)add.u r1.x, r1.x, 5

(rpt2)nop

stib.b.untyped.1d.u32.4.imm r1.x, r0.x, 0

end

14

ir3 tooling: computerator
❯ computerator --groups 1,1,1 -f test.asm

got gpu: FD750

localsize: 4x1x1

buf[0]: size=4, type=SSBO

buf[0]:

 00000006 00000007 00000008 00000009

 0.000000 0.000000 0.000000 0.000000

15

Questions?

16

17

