
Remarks on 2D Hardware Acceleration Support

Paul Kocialkowski
paulk@sys-base.io

XDC 2025
2025-09-30



2D Hardware Accelerators

Characteristics:
• Implement 2D-only raster operations

• Generally: scale, rotate, blit, crop, format, csc and more
• Typically fixed-function hardware

• No shader or instructions in the pipeline
• Static internal pipeline, bypass and mux
• Programmed with direct registers or command stream
• Low power, low latency, high performance

• Used for both (display) compositing and multimedia pipelines
• Standalone (memory to memory) or dedicated (front-end) integration

History:
• Very common in microcomputers starting from the late 70s
• Replaced by full GPUs for desktop/gaming starting from the late 90s
• Came back for dedicated use-cases (e.g. embedded, low power) in the 2000s
• Still relevant, useful and used today

2/11



2D Hardware Accelerators

Implementations:
• Available designs: e.g. (Verisilicon) Vivante GC520/GC520L
• In-house designs: e.g. Samsung FIMG2D, Rockchip RGA, Allwinner G2D
• Part of a bigger GPU unit: e.g. Imagination SGX (PVR2D)

RK3588 RGA3 Unit Block Diagram
3/11



Past Support Situation

Decay of 2D support:
• Fbdev acceleration via custom ioctls

• Driver-specific, not generic
• XFree86 XAA and X.org EXA for DDX

• Sometimes using direct userspace hardware access
• Difficult and not very satisfying

• Everything moved to GL around 2010
• DDX became generic with modesetting and Glamor
• All 2D acceleration was dropped
• Perhaps relevant for desktop but very bad for embedded
• Some 2D-accelerated DDX remained (e.g. xf86-video-armsoc)

• Wayland replaced X11
• Initial support with GL, sometimes pixman
• Nothing to support 2D hardware

4/11



Current Support Situation

Good things happened too:
• DRM Render can support 2D acceleration

• Driver-specific ioctls, not very elegant for fixed-function
• Existing drivers: exynos, etnaviv, (microchip/gfx2d)

• DRM KMS planes
• Only for front-ends (not memory to memory)
• Almost satisfying (flat properties)

• V4L2 M2M framework
• Limited to single in/out buffers and format-based operations
• Good enough for many multimedia workflows (no blitting)
• Existing drivers: s5p-g2d, rga

• Wayland compositors can support 2D acceleration
• Now using KMS planes for front-end compositing (limited)
• Missing a generic library for general compositing
• NXP has a Weston renderer using their stack

5/11



Why So Difficult?

Explicit objections (from the past):
• There is no defined standard API
• 2D is really hard to support

Bottomline:
• We are looking like fools!

• 2D acceleration is a 30-year-old feature...
• Strong demand and valid use-cases
• Vendors are rolling their own proprietary stacks

• We just need a reasonable API, not a standard
• The main difficulty is internal pipeline variability:

• Various internal blocks (features)
• Data flow configuration (bypass, mux)
• Order between blocks matters

6/11



Proposal: Explicit Topology

General ideas:
• No generic flat API can easily accomodate hardware variability
• Workloads can be described as a topology of configured linked operations
• Hardware can be described as a topology of blocks, possible links and properties

• Similar to the Media Controller API for complex pipelines
• Hardware topology is configured to match workload topology

• Blocks bypass and muxing when possible
• A generic library and uAPI can work without driver-specific bits

Components:
• Kernel-side: DRM G2D core, drivers and uAPI
• Userspace: libg2d, minimal API

7/11



Proposal: Explicit Topology Example

Input Buffer Crop Rotate Format Output Buffer

Example requested workload topology

DMA Rx 0 Crop Format

DMA Rx 1 Crop Format

Blitter Rotate CSC DMA Tx

Example corresponding hardware topology

8/11



Proposal: DRM G2D

General:
• Generic uAPI and core for fixed-function hardware
• Userspace retreives topology from driver
• Userspace submits jobs (state) to a queue, can validate first
• State is a list of properties for each block

• Base function properties (generic)
• GEM memory handles, fences, etc for DMA
• Links between blocks, bypass

• Sync with fences or explicit ioctl

Driver role:
• Register static hardware blocks description

• One for each base function and DMA rx/tx
• Validate requested state
• Configure each block as requested in state
• Pretty dumb and simple

9/11



Proposal: libg2d

General:
• Generic API for applications, topology-based

• Add configured function blocks and link them
• Standalone (not derived from bigger API) and simple

• Various possible backends:
• Generic DRM G2D
• Specific DRM Render
• Generic V4L2 M2M
• Generic OpenGL/Vulkan

• Checking and validation, may fail due to hardware

Topology solving:
• Accomodate user-provided topology using hardware topology
• Generic solver is doable (but not easy)
• Simplified static approaches can exist

10/11



Discussion

Takeaway:
• Proper 2D hardware acceleration support is possible
• This is a rough proposal outline, still lots of details to discuss
• Please reach out if interested

Thanks for listening!

11/11


