Adapting etnaviv
to contemporary
Vivante hardware

Christian Gmeiner
2025-10-01




- ¢

History Lesson:
Hardware Generations

e GCW Zero: mips (GC860)
e NXP i.MX6 series: armhf (GC880, GC2000, GC3000)
e NXP i.MX8 series: arm64 (GC7000 - different variations)

&) igalia



History Lesson: Markets

e |[ndustrial automation

e Healthcare devices

e Automotive infotainment
e SoC availability > 15 years




History Lesson: Driver Limitations

e Some features are emulated within shaders
e Some features are impossible to support
e etnaviv is a solid gles2 driver




Contemporary Hardware

OX7000,
OxX6009,
OX70008,
Ox0,
Ox0,

Ox1,

Ox1,

Ox1,




ontemporary Hardware

i.MX 8QuadMax
e 4x Cortex-A53
o 2X Cortex-A72

e 2x GC7000XSVX (Split
GPU architecture)




The good

e A more recent binary blob driver
e Can run gles3.x and vulkan CTS for RE
e Mainline linux works on my chosen SoM




The good: Hardware based xfb

o 4 * buffers (address, size, stride)

e 4 * 128 descriptors

e pause/resume support

e query support (PIPE_QUERY_PRIMITIVES_EMITTED)
e context buffer

e maps very well to nir_xfb_output_info




The good: geometry shaders

"GS" "Geometry Shader states"
"Ox01100" "CONTROL"
"Ox01104" "OUTPUT_TYPE"
"Ox01168" "UNKO01108"
"o" "UNKO"
24" "16" "VERTICES_COUN

"Ox01106C" "START_PC"
"Ox01110" "END_PC" "OXOOO00(

index of last instruction + 1

"Ox01114" "INST_ADDR" "VIVM"




The good

e fragment operations like alpha_to_coverage
e stencil texturing

o texture gather

e texelfetch

e tessellation

e multisample textures




The bad

deqp GLES3 runs take much longer than the GLES2 ones
around 20 DUTs

more hardware for ci is needed
goal: gles2 pre-merge testing for i.MX6Q




The ugly

128-bit formats are not supported in hardware but required
for GLES3.

We must emulate them — the challenge is doing it fast.

&) igalia



The ugly - 128bit emulation

RGBA32F (visualized RGB) Tiled RG plane Tiled BA plane




The ugly - 128bit emulation

e Every clear and blit operation needs to be done twice

+ + + + + + + +

etna_blit_clear_color_blt(struct pipe_context *pctx, unsigned -idx,
uint64_t new_clear_value = etna_clear_blit_pack_rgba(dst->format, color);
bool fast_clear = etna_blt_will_fastclear(dst_level, scissor_state);
int msaa_xscale = 1, msaa_yscale = 1;
bool 1is_128bit_format = format_is_128bit(dst->format);

translate_samples_to_xyscale(dst->texture->nr_samples,
&msaa_xscale, &msaa_yscale);
etna_blit_clear_color_blt(struct pipe_context *pctx, unsigned -idx,
clr.rect_h = dst_level->height * msaa_yscale;

if (is_128bit_format)
clr.clear_value[0] color->ui[0];
clr.clear_value[1] color->ui[1];

emit_blt_clearimage(ctx—->stream, &clr);

if (is_128bit_format) {
clr.clear_value[0] = color->ui[2];
clr.clear_value[1l] color->ui[3];
clr.dest.addr.offset += (dst_level->size x dst_level->depth) / 2;

emit_blt_clearimage(ctx->stream, &clr);
/* This made the TS valid x/

if (dst_level->ts_size) {
if (idx == 0) {



The ugly - 128bit emulation

8.3 GPU affinity configuration

In the multi-GPU Independent Mode, application can specify to run on a specific GPU among the multiple GPUs through an
environment variable VIV_MGPU_AFFINITY. Once an application’s GPU affinity is specified, the application will only run on the
specified GPU and will not migrate to other GPUs even if those GPUs are idle.

VIV_MGPU_AFFINITY is the environment variable to control the application GPU affinity on multi-GPU platform. The client drivers
will assume they are using a standalone GPU through a gcoHARDWARE object no matter how this variable is set. The possible
values for the environment variable VIV_MGPU_AFFINITY include:

* Not defined or

+ Defined as "0" gcoHARDWARE objects work in gcvMULTI_GPU_COMBINED mode (default)
— "1:0" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPUQO is used
— "1:1" gcoHARDWARE objects work in gcvMULTI_GPU_INDEPENDENT mode and GPU1 is used

On a single GPU device, setting VIV_MGPU_AFFINITY to 0 or 1 does not make any difference as all application processes/
threads are bound to GPUOQ. But the application will fail the GPU context initialization if VIV_MGPU_AFFINITY is setto "1:1" (driver
reports error).

™.
W !g3alia




- ¢

The ugly - 128bit emulation

What about rendering into a such a format?

We make use of MRTs to render into each 64bit half, but with
some shader magic. There is a nir pass that creates a second
output, splits the result and writes 64bit data.

Works well, as we report half of the supported render targets
and can use the others for this special 128 emulation case.

’6 Q) igalia




- ¢

The ugly - 128bit emulation
Now it gets really ugly .. sampling from such formats.

On the i.MX8gm there are in total 80 samplers that can be
used by any shader stage.

On other GPUs, however, only 32 samplers are available in
total, and in some cases they are restricted to a fixed/static
assignment across shader stages.

&) igalia



Status update

e i.MX8gm is my main target of interest
e mostly driven by CTS
e there are benefits for other Vivante GPUs




Status update: GLES3

e We are really close - about 600 fails on the i.MX8gm
e Support for some GLES3.1 and GLES3.2 features

e Desktop GL 3.0 is close too

e Biggest blocker is 128bit format emulation




Thanks! Questions?

Join us!

https://www.igalia.com/jobs



https://www.igalia.com/jobs
https://www.igalia.com/jobs

Status update - contemporary API

e very hacky branch that barely does anything
e Moving more code to src/etnaviv/common
e A shared image library is the next step







" igalia
‘-




