AAnviDlIA. ,

" Improving the current state of the
DRM in-kernel client ecosystem
“ NVIDIA Linux Graphics Team -

Brief overview of in-kernel DRM clients

Kernelspace content-blitting applications

- fbcon - Framebuffer consoles, also known as text consoles running on a framebuffer device

- bootsplash - WIP .,

- There is a proposal to work on building kernelspace bootsplash support using the DRM client infrastructure
- drm_panic - A Blue Screen of Death equivalent for Linux

- It is an example of a related application in kernelspace, but it does not make use of the in-kernel DRM

client infrastructure

<A NVIDIA I

Adopters supporting these in-kernel applications

Some quick statistics

- 57 DRM drivers implement fbdev emulation support
- rg -1 drm_client_setup -g ''include/**' | xargs -I {} dirname {} | uniq | wc -1
- while only 14 implement drm_panic support

- rg -1 "\.get_scanout_buffer' -g '"!**/drm_panic.c' | xargs -I {} dirname {} | uniq | wc -1

- Needing to implement different APIs to support functionality adds both development and

coverage testing costs if this needs to be done per-application

- The ideal scenario would be the case where all DRM in-kernel client applications can share the same API
- To understand how we can get there, we should take a look at the existing APIs from implementing DRM fbdev

emulation support and drm_panic support

<A NVIDIA I

Setting up fbdev emulation support

Perspective from device drivers

1. A DRM driver must implement .fbdev_probe for DRM fbdev emulation support. This callback
allocates a buffer that the kernel can blit content to for presenting to the display based

on the surface height, width, and fourcc pixel format

Driver registers support and allocates

needed framebuffer

<A NVIDIA I

Setting up fbdev emulation support

Perspective from device drivers

2. Tbcon content is blitted to the fbdev-backed framebuffer

Driver registers support and allocates
needed framebuffer

Application blits to the framebuffer

<A NVIDIA I

Setting up fbdev emulation support

Perspective from device drivers

3. An optional callback called after the framebuffer memory provided to the DRM core stack is

updated with the console contents

- This callback can be used for shadow buffering and performing real blits after some pre-processing.

drm_fbdev_ttm_helper_fb_dirty provides a simple example

Driver registers support and allocates
needed framebuffer

Application blits to the framebuffer Optionally, driver has a callback to do

anything needed post-blit

<ANVIDIA. I

Setting up drm_panic support

Perspective from device drivers

. For a driver to register support for DRM panic, it first must call drm_dev_register AND in
the call to drm_panic_register, the core stack loops through all planes of a DRM graphics

device to see if the driver has set up a drm_plane_helper_funcs.get_scanout_buffer for the

planes

Driver registers support that will

access a plane’s framebuffer when
needed

<ANVIDIA. I

Setting up drm_panic support

Perspective from device drivers

2. drm_plane_helper_funcs.get_scanout_buffer is called for all planes the callback is
implemented on. This function provides a 'struct drm_scanout_buffer' that functions can use
to blit to the display. A good example of this would be draw_panic_static_user in

drivers/gpu/drm/drm_panic.c

Driver registers support that will

access a plane’s framebuffer when
needed

Application blits to the framebuffer

<A NVIDIA I

Setting up drm_panic support

Perspective from device drivers

3. Optionally, a driver can implement a panic_flush callback that is called after core DRM
writes content to the scanout buffer. This can be useful if a driver needs to do extra

operations to make the buffer visible on the display

Driver registers support that will

access a plane’s framebuffer when Application blits to the framebuffer Optionally, driver has a callback to do

needed

anything needed post-blit

<ANVIDIA. I

Comparing the two in-kernel DRM clients

A look at their data structures

- The structs that represent the scanout buffers between the two stacks are also very similar,

'struct drm_scanout_buffer' and 'struct drm_client_buffer’

- Similar to drm_client_buffer, it would be better for drm_scanout_buffer to build its
structure on top of drm_framebuffer since it mostly reuses components found in that base
structure

- The remaining information like the iosys_map can be common among the two structures

- Unifying the buffer representation is the first step to converging these two in-kernel

applications

<A NVIDIA I

Comparing the two in-kernel DRM clients

Conclusions

- The flow between DRM panic and DRM fbdev emulation support is very similar

- Write in-kernel application content to a scanout buffer. Have a callback that enables driver post-blit

handling, enabling possibilities for shadow buffers, etc

- Similar to the buffer data structures, the framebuffer setup and post-blit handling flows

should also be unified

<A NVIDIA I

Unifying the APIs

That is the goal of the drm_client API

- “drm: Provide client setup helper and convert drivers"m]

- This series aimed to be a building block for in-kernel applications
- “Patch 4 adds drm_client_setup(), a client-agnostic interface to initialize the in-kernel DRM clients. It
only supports the new fbdev emulation setup, but additional clients will be added here. Hopefully this will

hide future changes to DRM client initialization from drivers.”

- Hopefully, unifying the similar paths between drm_panic and the common DRM client API paths
will improve drm_panic adoption while minimizing the number of APIs a driver has to
implement

- Needing separate driver APIs for future in-kernel applications will not scale as we add

functionality ranging from bootsplash support to in-kernel tetris

<A NVIDIA I

Unifying the APIs

That is the goal of the drm_client API

- NOTE: The decision to not use DRM client infrastructure was intentional for drm_panic in

order to reuse the currently presented framebuffer instead of mapping a new one,;

‘.get_scanout_buffer” equivalent for

|

- DRM client API could probably add another callback / incorporate a

“critical” in-kernel client applications

Risky during a crash

Gets remapped as the new scanout

DRM client API allocated buffer
buffer

drm_panic support through DRM
client APl infrastructure

Minimal risk Uses the buffer currently being

.get_scanout_bufter AP scanned out for the DRM plane

<A NVIDIA I

We would like your feedback!

- Maybe you have some visions for this unification effort?
- Or some questions regarding our development roadmap?

- Please reach out!

- Four of us are here at XDC
- NVIDIA Forums

- Feel free to email me with regards to development discussions

- Rahul Rameshbabu <rrameshbabu@nvidia.com>

<A NVIDIA I

References

- [1] bootsplash WIP status
- https://docs.kernel.org/gpu/todo.html#bootsplash

- [2] “drm: Provide client setup helper and convert drivers”
- https://lore.kernel.org/dri-devel/2024092407/1734.98201-1-tzimmermann@suse.de/

» [3] drm_panic changing from using the DRM client API to drm_scanout_buffer
- https://lore.kernel.org/dri-devel/9b232cab-057c-bb42-48cb-f83da3fBe938@suse.de/

<A NVIDIA I

https://docs.kernel.org/gpu/todo.html#bootsplash
https://lore.kernel.org/dri-devel/20240924071734.98201-1-tzimmermann@suse.de/
https://lore.kernel.org/dri-devel/9b232cab-057c-bb42-48cb-f83da3f0e938@suse.de/

<AnviblIA 000 .

- - 3
Ty

