
1

Descriptors are hard

Faith Ekstrand

XDC 2025, Vienna Austria

2

About Me
● Faith Ekstrand

– @gfxstrand@treehouse.systems

● Been around freedesktop.org since 2013
– First commit: wayland/31511d0e, Jan 11, 2013

● At Intel from June 2014 to December 2022
– NIR, Intel (ANV) Vulkan driver, SPIR-V NIR, ISL, other Intel bits→

● At Collabora since January 2022
– Work across the upstream Linux graphics stack, wherever needed
– Currently the lead developer / maintainer of NVK

3

Descriptors are hard

4

What are descriptors?
● Modern GPUs are a combination of programmable shader

cores and fixed-function hardware

5

What are descriptors?
● Modern GPUs are a combination of programmable shader

cores and fixed-function hardware
● The fixed-function hardware comes in two forms:

– Hardware to feed the shader cores (input assembler, rasterizer, dispatcher)

– Hardware to accelerate resource access (texture sampling, image load/store, etc.)

6

Vertex Shader

Draw

Input Assembler

Tessellation Control Shader

Tessellation Primitive Generator

Tessellation Evaluation Shader

Rasterization

Indirect Buffer

Legend

Geometry Shader

Vertex Post-Processing

Early Per-Fragment Tests

Fragment Shader

Late Per-Fragment Tests

Blending

Index Buffer
Vertex Buffers

Task Shader

DrawMeshTasks

Depth/Stencil Attachments

Input Attachments

Color Attachments

Fixed Function Stage

Shader Stage

 Resource

Compute Shader

Dispatch

Task Assembler

Mesh Assembler

Mesh Shader

Descriptor Sets

Push Constants

Uniform Buffers
Uniform Texel Buffers

Sampled Images
Storage Buffers

Storage Texel Buffers
Storage Images

7

What are descriptors?
● Modern GPUs are a combination of programmable shader

cores and fixed-function hardware
● The fixed-function hardware comes in two forms:
● Descriptors are the HW description of a resource

– Textures and samplers
– Storage images
– Texel buffers
– UBOs and SSBOs
– Acceleration structures

8

Why are descriptors hard?

9

Descriptors are expensive

10

Descriptors are expensive
● For simple things like a UBO or SSBO, descriptors are easy

– A simple base address + size is all you need

– Acceleration structures are just a pointer

– Typically 64 or 128 bits

– NVIDIA can pack a whole UBO into 64 bits

11

Descriptors are expensive
● For simple things like a UBO or SSBO, descriptors are easy

● For images, descriptors can get quite large
– Needs to describe the complete image layout

● Base address, Mip layout, tiling, etc.

– On AMD, an image descriptor is 32 bytes and a sampler is 16 bytes

– On NVIDIA, both are 32 bytes

– On Intel, an image descriptor is 64 bytes and a sampler is 16 bytesrto

12

Descriptors are expensive
● For simple things like a UBO or SSBO, descriptors are easy

● For images, descriptors can get quite large (up to 64B)

● GPU shaders execute in subgroups of up to 128 invocations
– On AMD, they use either 64 or 32-wide subgroups

– A texture instruction can have up to 2 vec4s (32B) of client data (coords, etc.)

– Combined with an image+sampler, that makes 80B per-invocation on AMD

– 64 lanes x 80B = 5120B of data per per instruction (that’s more than a CPU page!)

13

That’s a LOT of data

14

How do we reduce this cost?

15

How do we reduce this cost?
● On AMD, they use SGPRs

– They have fast scalar load instructions capable of pulling an entire descriptor into

SGPRs on a single instruction

– Descriptors are sent in SGPRs and the client data is sent in VGPRs

– SGPRs are only sent once for the entire subgroup so they’re basically free

● One SGPR costs the same as 32 or 64 UGPRs

– If the descriptor is non-uniform, they have to loop

16

How do we reduce this cost?
● On AMD, they use SGPRs

–

17

How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table

– Actually, two tables: One for images and one for samplers

– The tables are bound to the context and very expensive to switch

– The hardware caches these table like crazy

– In the shader, a single 32-bit handle is passed to the sampler unit

● 12 bits of sampler index, 20 bits of texture index

– Non-uniform texture access is “free” on Turing+

18

Both of these designs are bindless

19

How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table
● Intel is pretty similar to NVIDIA, but different

– They have bindless surface/sampler tables

– Hardware instructions pass table indices, except they’re uniform

– They also have HW binding tables which provide an extra indirection

● Used for render targets and “bound” resources

– Again, they cache everything like crazy

20

How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table
● Intel is pretty similar to NVIDIA, but different
● Arm (v9+) has VK_EXT_descriptor_buffer in hardware

– They have 32 descriptor set bindings

– Each binding points to a buffer full of descriptors

– Texture instructions reference the set + index (8:24 bits)

– Unlike NVIDIA and Intel, these set bindings are fully pipelined

21

How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table
● Intel is pretty similar to NVIDIA, but different
● Arm (v9+) has VK_EXT_descriptor_buffer in hardware
● Arm (v7-) has a table per-stage

– This table contains everything: Vertex buffers, images, textures, UBOs, etc.

– Shaders pass indices into this table to the sampler

– SSBOs are just an address + size living in a UBO somewhere

22

Let’s look at the big picture

23

Types of descriptors
Roughly, descriptors come in a few types:

● Direct access (D)
– The shader passes the entire descriptor to the memory unit directly

– It could come from a buffer or be baked into the shader

– The global addresses for SSBOs are a form of direct descriptor

24

Types of descriptors
Roughly, descriptors come in a few types:

● Direct access (D)

● Descriptor Buffers (B)
– Some set of buffers are bound as pipelined state

– Shaders pass a descriptor buffer index + offset/index to the memory unit

– Unlike direct descriptors, you must indirect through one of the bound buffers

25

Types of descriptors
Roughly, descriptors come in a few types:

● Direct access (D)

● Descriptor Buffers (B)

● Descriptor Heaps (H)
– Heaps are bound to the context and expensive to change

– Shaders pass a heap index to the memory unit

– Saves a lot of internally wiring because the heap addresses are global

26

Types of descriptors
Roughly, descriptors come four types:

● Direct access (D)

● Descriptor Buffers (B)

● Descriptor Heaps (H)

● Fixed HW bindings (F)
– Everything else: HW binding tables, MMIO regs, etc.

– Generally pipelined, but very restrictive

27

Types of descriptors
Textures Images Samplers Border

Colors
Typed

buffers
UBOs SSBOs

NVIDIA H H H H D/F D

AMD D D D H D D D

Intel (gfx9+) H/F H/F H H/F H/D/F H/D/F

Intel (gfx8-) F F F F D/F D/F

Arm (v9+) B B B B B/D/F B/D

Arm (v7-) F F F F D/F D

Qualcomm
(a5xx+)

B B B B B B

Broadcom
(vc5)

D D D D D D

Apple B/F B/F H 🤣 N/A D D

28

How do we model this in the API?

29

OpenGL [ES]

30

Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

31

Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource
– Gallium supports 32 samplers, for instance

32

Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource

● The slots are shared across all shader stages
– No per-stage bindings

– No separation between 3D and compute

33

Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource

● The slots are shared across all shader stages

● Drivers translate this to whatever they want
– Bindless + a UBO of handles on NVIDIA

– A descriptor buffer on AMD, Arm, and Qualcomm

– Push constants on Broadcom

34

Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource

● The slots are shared across all shader stages

● Drivers translate this to whatever they want

● This works pretty well for fixed HW descriptors

35

Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL

36

Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL

● The client calls glGetImageHandleARB() to get a 64-bit

“handle” to the texture/sampler

37

Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL

● The client calls glGetImageHandleARB() to get a 64-bit

“handle” to the texture/sampler

● The client also has to manage texture/image residency
– glMakeTextureHandleResidentARB()

– glMakeTextureHandleNonResidentARB()

38

Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL

● The client calls glGetImageHandleARB() to get a 64-bit

“handle” to the texture/sampler

● The client also has to manage texture/image residency

● In the shader, the client can texture using that handle

instead of a bound texture object.

39

Does this sound familiar?

40

Yeah, it’s the NVIDIA model...

NV_bindless_texture should have been a hint. 😅

41

Vulkan descriptor sets

42

Vulkan descriptor sets
● Vulkan descriptor sets are a compromise

43

Vulkan descriptor sets
● Vulkan descriptor sets are a compromise

● They can be backed by buffers of descriptors
– In which case the client manages memory and lifetimes for you

44

Vulkan descriptor sets
● Vulkan descriptor sets are a compromise

● They can be backed by buffers of descriptors

● They are also CPU-inspectable so you can use HW bindings
– Static use rules let the driver know what descriptors are used by a shader

– The driver scrapes bindings out of the set at draw time and maps them to HW

– Old Intel and Mali both need this, others use it as an optimization

45

Vulkan descriptor sets
● Vulkan descriptor sets are a compromise

● They can be backed by buffers of descriptors

● They are also CPU-inspectable so you can use HW bindings

● With VK_EXT_descriptor_indexing, you can do bindless
– Large descriptor sets (way bigger than typical fixed HW limits)

– Non-uniform indexing of descriptor arrays

– Update-after-bind (not CPU-inspectable)

46

VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control

47

VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control

● Descriptor set layouts are still determined by the driver

48

VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control

● Descriptor set layouts are still determined by the driver

● The client creates a buffer backed by client memory

49

VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control

● Descriptor set layouts are still determined by the driver

● The client creates a buffer backed by client memory

● The client gets descriptors from the driver and writes them

into the buffer

50

EDB sucks on heap-based HW

51

VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

52

VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

53

VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer
– Actual descriptors are still managed by VkImageView

– Adds an extra indirection

54

VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer

● Texel buffers also have to be emulated
– VkBufferView is gone so there’s no place to manage the descriptor lifetime

– We allocate ~10k buffer views at device create and do shader shenanigans

55

VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer

● Texel buffers also have to be emulated

● When combined with VKD3D-Proton, it’s a mess
– As many as 5 indirections just to do a texture fetch

– Breaks our cbuf textures optimization

56

VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer

● Texel buffers also have to be emulated

● When combined with VKD3D-Proton, it’s a mess

● This is why VKD3D-Proton perf sucks on NVIDIA

57

D3D12 descriptor heaps

58

D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

– A big array of descriptors

– Mappable (sort of)

– Clients write descriptor straight into the heap

59

D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else
– Texture views, UAVs, buffers, etc. all go in the heap

60

D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state
– They’re assumed to be very expensive to change

61

D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state

● Shaders reference heap entries by index
– With D3D12 Bindless, it’s an actual index in the shader

– Most HLSL shaders use a dynamic mapping mechanism

62

D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state

● Shaders reference heap entries by index

● There are also root constants and root descriptors
– Only buffers can go in root descriptors

– Root descriptors go directly in the root table, not in the heap

63

D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state

● Shaders reference heap entries by index

● There are also root constants and root descriptors

● Developers really like the D3D12 model

64

D3D12 + VKD3D + NVIDIA = 🐌

65

VKD3D heap emulation
● VKD3D-Proton emulates heaps as one big descriptor set

– One giant array per descriptor type in the shader that cover the whole heap

– It can also use VK_EXT_descriptor_buffer

66

VKD3D heap emulation
● VKD3D-Proton emulates heaps as one big descriptor set

● Accessing a texture is a multi-step process
– Look up the client index in the root table

● Root tables are too big for push so this is a UBO in a descriptor set

● Fetch set address, fetch UBO descriptor, fetch value from UBO (3 fetches)

– Calculate the heap index (this is just math)

– Texture from tex[idx]

67

VKD3D heap emulation
● VKD3D-Proton emulates heaps as one big descriptor set

● Accessing a texture is a multi-step process

● NVIDIA implements descriptor sets as buffers of handles
– Same strategy for both NVK and NVIDIA proprietary driver

– VKD3D’s descriptor sets are too big to fit in a UBO

– This means we don’t get the bound texture optimization

– We fetch the set address, fetch the handle, then texture

68

Have you been counting?

69

That’s 5 dependent loads
(More for separate image/sampler)

70

This is why VKD3D is a
slide show on NVIDIA

71

So what are we doing about it?

© The Khronos® Group Inc. 2024 - Page 72This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan

https://creativecommons.org/licenses/by/4.0/

© The Khronos® Group Inc. 2024 - Page 73This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers

© The Khronos® Group Inc. 2024 - Page 74This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan

© The Khronos® Group Inc. 2024 - Page 75This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!

 Heaps are just buffers, not objects
 Clients can CPU map them directly
 Clients can even DMA to them or write them from a shader

© The Khronos® Group Inc. 2024 - Page 76This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout

 Implementation advertises descriptor sizes and alignments
 Clients place descriptors in memory

© The Khronos® Group Inc. 2024 - Page 77This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout
 Embedded samplers replace immutable samplers

 Required for YcbCr conversion
 Managed by the driver, not backed by a VkSampler

© The Khronos® Group Inc. 2024 - Page 78This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout
 Embedded samplers replace immutable samplers
 Compatible with D3D12

 Designed for both app developers and translation layers
 New SPIR-V extension for direct descriptor access
 Provides convenient mappings from set/binding to heaps

© The Khronos® Group Inc. 2024 - Page 79This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout
 Embedded samplers replace immutable samplers
 Compatible with D3D12
 Coming soon(ish)

80

What does this mean for Mesa?

81

WIP Implementations
● We’ve been working on implementations

82

WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers
– NVK (Nvidia), RADV (AMD), and ANV (Intel)

– Currently the code still under the Khronos NDA

– Available to anyone who is a Khronos member

83

WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers

● Most of the compiler work is done in NIR and the runtime
– Common lowering pass for set/binding heap mappings→

– SPIR-V parser support for new heap intrinsics

– Drivers just see heap offsets

84

WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers

● Most of the compiler work is done in NIR and the runtime

● New Meta paths which use heaps
– Heaps raise extra issues for meta commands (copy, blit, MSAA resolve)

– New Meta interfaces being added to allow it to work with heaps

– Drivers can still use descriptor set paths if they prefer

85

WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers

● Most of the compiler work is done in NIR and the runtime

● New Meta paths which use heaps

● WIP support in DXVK and VKD3D-Proton
– Still pretty WIP but we will hopefully be able to start analyzing perf soon

86

What does this mean for your
driver?

87

Driver changes to support heaps
● Need to be able to bind heaps

– For Intel and NVIDIA, we bind the client heap as the HW heap

● There’s a bunch of work to avoid stalls

● On Nvidia HW, we also have to deal with internal descriptor ranges

– For HW with descriptor buffers (including AMD), there are 3 buffers:

● Client Sampler heap

● Client Resource heap

● Embedded sampler heap

88

Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap
– If you’re AMD, samplers can go straight in the shader binary

– The rest of us need a hash+cache heap

– API limits are in terms of unique samplers used

● There is no VkSampler object for these

89

Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries
– Might involve a little refactoring of image/buffer view code

– VkImage/BufferView are gone, they just take p*CreateInfo

– UBO/SSBO are address + size

90

Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries

● Need to sort out meta command descriptors
– If you’re a descriptor buffer driver, you can still use sets at no perf cost

– If you’re Intel, you can still use binding tables at least for now

– It’s a mess for NVK. 🙈

91

Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries

● Need to sort out meta command descriptors

● Need to add heap lowering code

92

Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries

● Need to sort out meta command descriptors

● Need to add heap lowering code

● And that’s it!

93

NIR changes for heaps
● Image/texture support for heap offsets

– New image_heap intrinsics

– New nir_tex_src_texture/sampler_heap_offset

94

NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support
– Currently being scraped out and passed side-band

– New nir_tex_instr bits to select an embedded sampler

– May get embedded directly in NIR with a pass to scrape them out
● This is annoying because NIR would have to reference vk_sampler_state

– Details still WIP

95

NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic
– Replaces load_vulkan_resource_descriptor

– Also works with descriptor sets

– Draft MR: https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/37286

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/37286

96

NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic

● New load_descriptor_heap[_data] intrinsics
– Loads a buffer or acceleration structure descriptor

– Takes a descriptor type enum so the driver knows what to load

– load_descriptor_heap_data loads raw data with no conversion

97

NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic

● New load_descriptor_heap[_data] intrinsics

● New global_addr_to_descriptor intrinsic
– Converts a 64-bit global address to a buffer descriptor

98

NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic

● New load_descriptor_heap[_data] intrinsics

● New global_addr_to_descriptor intrinsic

● NVK lowering for all this is 248 LOC

99

We are hiring
col.la/careers

http://col.la/careers

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	The Future of descriptors in Vulkan
	The Future of descriptors in Vulkan
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

