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About Me
● Faith Ekstrand

– @gfxstrand@treehouse.systems

● Been around freedesktop.org since 2013
– First commit: wayland/31511d0e, Jan 11, 2013

● At Intel from June 2014 to December 2022
– NIR, Intel (ANV) Vulkan driver, SPIR-V  NIR, ISL, other Intel bits→

● At Collabora since January 2022
– Work across the upstream Linux graphics stack, wherever needed
– Currently the lead developer / maintainer of NVK
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Descriptors are hard
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What are descriptors?
● Modern GPUs are a combination of programmable shader 

cores and fixed-function hardware
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What are descriptors?
● Modern GPUs are a combination of programmable shader 

cores and fixed-function hardware
● The fixed-function hardware comes in two forms:

– Hardware to feed the shader cores (input assembler, rasterizer, dispatcher)

– Hardware to accelerate resource access (texture sampling, image load/store, etc.)
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What are descriptors?
● Modern GPUs are a combination of programmable shader 

cores and fixed-function hardware
● The fixed-function hardware comes in two forms:
● Descriptors are the HW description of a resource

– Textures and samplers
– Storage images
– Texel buffers
– UBOs and SSBOs
– Acceleration structures
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Why are descriptors hard?
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Descriptors are expensive
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Descriptors are expensive
● For simple things like a UBO or SSBO, descriptors are easy

– A simple base address + size is all you need

– Acceleration structures are just a pointer

– Typically 64 or 128 bits

– NVIDIA can pack a whole UBO into 64 bits
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Descriptors are expensive
● For simple things like a UBO or SSBO, descriptors are easy

● For images, descriptors can get quite large
– Needs to describe the complete image layout

● Base address, Mip layout, tiling, etc.

– On AMD, an image descriptor is 32 bytes and a sampler is 16 bytes

– On NVIDIA, both are 32 bytes

– On Intel, an image descriptor is 64 bytes and a sampler is 16 bytesrto 
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Descriptors are expensive
● For simple things like a UBO or SSBO, descriptors are easy

● For images, descriptors can get quite large (up to 64B)

● GPU shaders execute in subgroups of up to 128 invocations
– On AMD, they use either 64 or 32-wide subgroups

– A texture instruction can have up to 2 vec4s (32B) of client data (coords, etc.)

– Combined with an image+sampler, that makes 80B per-invocation on AMD

– 64 lanes x 80B = 5120B of data per per instruction (that’s more than a CPU page!)
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That’s a LOT of data
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How do we reduce this cost?
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How do we reduce this cost?
● On AMD, they use SGPRs

– They have fast scalar load instructions capable of pulling an entire descriptor into 

SGPRs on a single instruction

– Descriptors are sent in SGPRs and the client data is sent in VGPRs

– SGPRs are only sent once for the entire subgroup so they’re basically free

● One SGPR costs the same as 32 or 64 UGPRs

– If the descriptor is non-uniform, they have to loop
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How do we reduce this cost?
● On AMD, they use SGPRs

–
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How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table

– Actually, two tables: One for images and one for samplers

– The tables are bound to the context and very expensive to switch

– The hardware caches these table like crazy

– In the shader, a single 32-bit handle is passed to the sampler unit

● 12 bits of sampler index, 20 bits of texture index

– Non-uniform texture access is “free” on Turing+
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Both of these designs are bindless
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How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table
● Intel is pretty similar to NVIDIA, but different

– They have bindless surface/sampler tables

– Hardware instructions pass table indices, except they’re uniform

– They also have HW binding tables which provide an extra indirection

● Used for render targets and “bound” resources

– Again, they cache everything like crazy
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How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table
● Intel is pretty similar to NVIDIA, but different
● Arm (v9+) has VK_EXT_descriptor_buffer in hardware

– They have 32 descriptor set bindings

– Each binding points to a buffer full of descriptors

– Texture instructions reference the set + index (8:24 bits)

– Unlike NVIDIA and Intel, these set bindings are fully pipelined
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How do we reduce this cost?
● On AMD, they use SGPRs
● On NVIDIA, everything goes in a big table
● Intel is pretty similar to NVIDIA, but different
● Arm (v9+) has VK_EXT_descriptor_buffer in hardware
● Arm (v7-) has a table per-stage

– This table contains everything: Vertex buffers, images, textures, UBOs, etc.

– Shaders pass indices into this table to the sampler

– SSBOs are just an address + size living in a UBO somewhere
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Let’s look at the big picture
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Types of descriptors
Roughly, descriptors come in a few types:

● Direct access (D)
– The shader passes the entire descriptor to the memory unit directly

– It could come from a buffer or be baked into the shader

– The global addresses for SSBOs are a form of direct descriptor
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Types of descriptors
Roughly, descriptors come in a few types:

● Direct access (D)

● Descriptor Buffers (B)
– Some set of buffers are bound as pipelined state

– Shaders pass a descriptor buffer index + offset/index to the memory unit

– Unlike direct descriptors, you must indirect through one of the bound buffers
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Types of descriptors
Roughly, descriptors come in a few types:

● Direct access (D)

● Descriptor Buffers (B)

● Descriptor Heaps (H)
– Heaps are bound to the context and expensive to change

– Shaders pass a heap index to the memory unit

– Saves a lot of internally wiring because the heap addresses are global
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Types of descriptors
Roughly, descriptors come four types:

● Direct access (D)

● Descriptor Buffers (B)

● Descriptor Heaps (H)

● Fixed HW bindings (F)
– Everything else: HW binding tables, MMIO regs, etc.

– Generally pipelined, but very restrictive
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Types of descriptors
Textures Images Samplers Border 

Colors
Typed 

buffers
UBOs SSBOs

NVIDIA H H H H D/F D

AMD D D D H D D D

Intel (gfx9+) H/F H/F H H/F H/D/F H/D/F

Intel (gfx8-) F F F F D/F D/F

Arm (v9+) B B B B B/D/F B/D

Arm (v7-) F F F F D/F D

Qualcomm 
(a5xx+)

B B B B B B

Broadcom 
(vc5)

D D D D D D

Apple B/F B/F H 🤣 N/A D D
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How do we model this in the API?
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OpenGL [ES]
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Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots
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Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource
– Gallium supports 32 samplers, for instance
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Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource

● The slots are shared across all shader stages
– No per-stage bindings

– No separation between 3D and compute
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Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource

● The slots are shared across all shader stages

● Drivers translate this to whatever they want
– Bindless + a UBO of handles on NVIDIA

– A descriptor buffer on AMD, Arm, and Qualcomm

– Push constants on Broadcom
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Descriptors in OpenGL [ES]
● Resources in OpenGL [ES] are bound to slots

● There is a fixed number per type of resource

● The slots are shared across all shader stages

● Drivers translate this to whatever they want

● This works pretty well for fixed HW descriptors
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Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL
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Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL

● The client calls glGetImageHandleARB() to get a 64-bit 

“handle” to the texture/sampler
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Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL

● The client calls glGetImageHandleARB() to get a 64-bit 

“handle” to the texture/sampler

● The client also has to manage texture/image residency
– glMakeTextureHandleResidentARB()

– glMakeTextureHandleNonResidentARB()
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Bindless texturing in OpenGL
● ARB_bindless_texture added bindless texturing to OpenGL

● The client calls glGetImageHandleARB() to get a 64-bit 

“handle” to the texture/sampler

● The client also has to manage texture/image residency

● In the shader, the client can texture using that handle 

instead of a bound texture object.
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Does this sound familiar?
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Yeah, it’s the NVIDIA model...

NV_bindless_texture should have been a hint. 😅
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Vulkan descriptor sets
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Vulkan descriptor sets
● Vulkan descriptor sets are a compromise
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Vulkan descriptor sets
● Vulkan descriptor sets are a compromise

● They can be backed by buffers of descriptors
– In which case the client manages memory and lifetimes for you
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Vulkan descriptor sets
● Vulkan descriptor sets are a compromise

● They can be backed by buffers of descriptors

● They are also CPU-inspectable so you can use HW bindings
– Static use rules let the driver know what descriptors are used by a shader

– The driver scrapes bindings out of the set at draw time and maps them to HW

– Old Intel and Mali both need this, others use it as an optimization
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Vulkan descriptor sets
● Vulkan descriptor sets are a compromise

● They can be backed by buffers of descriptors

● They are also CPU-inspectable so you can use HW bindings

● With VK_EXT_descriptor_indexing, you can do bindless
– Large descriptor sets (way bigger than typical fixed HW limits)

– Non-uniform indexing of descriptor arrays

– Update-after-bind (not CPU-inspectable)
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VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control
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VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control

● Descriptor set layouts are still determined by the driver
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VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control

● Descriptor set layouts are still determined by the driver

● The client creates a buffer backed by client memory
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VK_EXT_descriptor_buffer
● VK_EXT_descriptor_buffer gives the client more control

● Descriptor set layouts are still determined by the driver

● The client creates a buffer backed by client memory

● The client gets descriptors from the driver and writes them 

into the buffer
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EDB sucks on heap-based HW
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VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it
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VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”
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VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer
– Actual descriptors are still managed by VkImageView

– Adds an extra indirection
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VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer

● Texel buffers also have to be emulated
– VkBufferView is gone so there’s no place to manage the descriptor lifetime

– We allocate ~10k buffer views at device create and do shader shenanigans
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VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer

● Texel buffers also have to be emulated

● When combined with VKD3D-Proton, it’s a mess
– As many as 5 indirections just to do a texture fetch

– Breaks our cbuf textures optimization
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VK_EXT_descriptor_buffer on heaps
● NVK, NVIDIA, and Intel all implement it

● Only Intel implements it “properly”

● On NVIDIA, you end up with indices in the buffer

● Texel buffers also have to be emulated

● When combined with VKD3D-Proton, it’s a mess

● This is why VKD3D-Proton perf sucks on NVIDIA
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D3D12 descriptor heaps
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D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

– A big array of descriptors

– Mappable (sort of)

– Clients write descriptor straight into the heap
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D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else
– Texture views, UAVs, buffers, etc. all go in the heap
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D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state
– They’re assumed to be very expensive to change
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D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state

● Shaders reference heap entries by index
– With D3D12 Bindless, it’s an actual index in the shader

– Most HLSL shaders use a dynamic mapping mechanism
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D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state

● Shaders reference heap entries by index

● There are also root constants and root descriptors
– Only buffers can go in root descriptors

– Root descriptors go directly in the root table, not in the heap



63

D3D12 descriptor heaps
● ID3D12DescriptorHeap provides a heap object

● One heap for samplers and one for everything else

● Heaps get bound as command buffer state

● Shaders reference heap entries by index

● There are also root constants and root descriptors

● Developers really like the D3D12 model
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D3D12 + VKD3D + NVIDIA = 🐌
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VKD3D heap emulation
● VKD3D-Proton emulates heaps as one big descriptor set

– One giant array per descriptor type in the shader that cover the whole heap

– It can also use VK_EXT_descriptor_buffer



66

VKD3D heap emulation
● VKD3D-Proton emulates heaps as one big descriptor set

● Accessing a texture is a multi-step process
– Look up the client index in the root table

● Root tables are too big for push so this is a UBO in a descriptor set

● Fetch set address, fetch UBO descriptor, fetch value from UBO (3 fetches)

– Calculate the heap index (this is just math)

– Texture from tex[idx]
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VKD3D heap emulation
● VKD3D-Proton emulates heaps as one big descriptor set

● Accessing a texture is a multi-step process

● NVIDIA implements descriptor sets as buffers of handles
– Same strategy for both NVK and NVIDIA proprietary driver

– VKD3D’s descriptor sets are too big to fit in a UBO

– This means we don’t get the bound texture optimization

– We fetch the set address, fetch the handle, then texture
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Have you been counting?
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That’s 5 dependent loads
(More for separate image/sampler)
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This is why VKD3D is a 
slide show on NVIDIA
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So what are we doing about it?
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The Future of descriptors in Vulkan

https://creativecommons.org/licenses/by/4.0/
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The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
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The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
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The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!

 Heaps are just buffers, not objects
 Clients can CPU map them directly
 Clients can even DMA to them or write them from a shader
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The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout

 Implementation advertises descriptor sizes and alignments
 Clients place descriptors in memory
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The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout
 Embedded samplers replace immutable samplers

 Required for YcbCr conversion
 Managed by the driver, not backed by a VkSampler
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The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout
 Embedded samplers replace immutable samplers
 Compatible with D3D12

 Designed for both app developers and translation layers
 New SPIR-V extension for direct descriptor access
 Provides convenient mappings from set/binding to heaps



© The Khronos® Group Inc. 2024 - Page 79This work is licensed under a Creative Commons Attribution 4.0 International License

The Future of descriptors in Vulkan
 We’ve been listening to the voices of developers
 We’re working on a new descriptor model for Vulkan
 Based on heaps, but better!
 Clients control the in-memory layout
 Embedded samplers replace immutable samplers
 Compatible with D3D12
 Coming soon(ish)
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What does this mean for Mesa?
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WIP Implementations
● We’ve been working on implementations
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WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers
– NVK (Nvidia), RADV (AMD), and ANV (Intel)

– Currently the code still under the Khronos NDA

– Available to anyone who is a Khronos member
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WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers

● Most of the compiler work is done in NIR and the runtime
– Common lowering pass for set/binding  heap mappings→

– SPIR-V parser support for new heap intrinsics

– Drivers just see heap offsets
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WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers

● Most of the compiler work is done in NIR and the runtime

● New Meta paths which use heaps
– Heaps raise extra issues for meta commands (copy, blit, MSAA resolve)

– New Meta interfaces being added to allow it to work with heaps

– Drivers can still use descriptor set paths if they prefer
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WIP Implementations
● We’ve been working on implementations

● WIP implementations in multiple Mesa drivers

● Most of the compiler work is done in NIR and the runtime

● New Meta paths which use heaps

● WIP support in DXVK and VKD3D-Proton
– Still pretty WIP but we will hopefully be able to start analyzing perf soon
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What does this mean for your 
driver?
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Driver changes to support heaps
● Need to be able to bind heaps

– For Intel and NVIDIA, we bind the client heap as the HW heap

● There’s a bunch of work to avoid stalls

● On Nvidia HW, we also have to deal with internal descriptor ranges

– For HW with descriptor buffers (including AMD), there are 3 buffers:

● Client Sampler heap

● Client Resource heap

● Embedded sampler heap
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Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap
– If you’re AMD, samplers can go straight in the shader binary

– The rest of us need a hash+cache heap

– API limits are in terms of unique samplers used

● There is no VkSampler object for these
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Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries
– Might involve a little refactoring of image/buffer view code

– VkImage/BufferView are gone, they just take p*CreateInfo

– UBO/SSBO are address + size
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Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries

● Need to sort out meta command descriptors
– If you’re a descriptor buffer driver, you can still use sets at no perf cost

– If you’re Intel, you can still use binding tables at least for now

– It’s a mess for NVK. 🙈
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Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries

● Need to sort out meta command descriptors

● Need to add heap lowering code
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Driver changes to support heaps
● Need to be able to bind heaps

● Need to manage the embedded sampler heap

● Need to implement descriptor queries

● Need to sort out meta command descriptors

● Need to add heap lowering code

● And that’s it!
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NIR changes for heaps
● Image/texture support for heap offsets

– New image_heap intrinsics

– New nir_tex_src_texture/sampler_heap_offset



94

NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support
– Currently being scraped out and passed side-band

– New nir_tex_instr bits to select an embedded sampler

– May get embedded directly in NIR with a pass to scrape them out
● This is annoying because NIR would have to reference vk_sampler_state

– Details still WIP
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NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic
– Replaces load_vulkan_resource_descriptor

– Also works with descriptor sets

– Draft MR: https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/37286

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/37286
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NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic

● New load_descriptor_heap[_data] intrinsics
– Loads a buffer or acceleration structure descriptor

– Takes a descriptor type enum so the driver knows what to load

– load_descriptor_heap_data loads raw data with no conversion
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NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic

● New load_descriptor_heap[_data] intrinsics

● New global_addr_to_descriptor intrinsic
– Converts a 64-bit global address to a buffer descriptor
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NIR changes for heaps
● Image/texture support for heap offsets

● Embedded sampler support

● New load_buffer_ptr intrinsic

● New load_descriptor_heap[_data] intrinsics

● New global_addr_to_descriptor intrinsic

● NVK lowering for all this is 248 LOC
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We are hiring
col.la/careers

http://col.la/careers
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