SSA-based Register Allocation
for GPU Architectures

Connor Abbott, Daniel Schirmann (Valve)

SSA Form

if (...) A

vl = ...
} else {
vl = ...

}

if (...) A

vl 0 = ...
} else {
vl 1 = ...

s
vi_2 = ¢o(v1_0, vi1_1)

// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer

// scientist's overactive imagination.

SSA Form: Deconstruction

if (...) {
vl 0 = ...
} else {
vl 1 = ...
5
vi_2 = ¢o(v1_0, vi1_1)

—)

if (...) {
vl 0 = ..
vl = v1

} else {
vl 1 =
vl = v1

Register Allocation

load ...
load ...
load ...
add vO0, v1
add v3, v2

load ...
load ...
load ...

add roO,
add ro,

r
r2

Register Allocation: Optimality

As few copies as possible?

Less and well-placed spill code?
Using as few registers as possible?
Avoid pipeline stalls (RAW, WAR, ...)?

Traditional Register Allocation

e first deconstruct SSA, then run Register Allocation
e Existing approaches: graph-coloring, linear-scan

Traditional Register Allocation

e Coalescing and Register Allocation are decoupled
e Spilling and Register Allocation are done at once

SSA-Based Register Allocation

e "Optimal Register Allocation for SSA-form Programs in polynomial Time" by

Sebastian Hack and Gerhard Goos
o Notactually optimal!

e First run register allocation, then deconstruct SSA
e Phinodes get registers assigned!

Register Allocation and SSA

e Coalescingisimplicit
e Spilling can be decoupled

What about GPUs?

Dynamic register sharing

GPUs

e Might benefit from using less registers
e Spillingis expensive on GPUs
e ->SSA-based allocators are much better

The Algorithm

First Steps

e OQurinitial architecture:

o No branching (single basic block)
o Nregisters, all exactly the same

Liveness and Kill Flags

v0O = load ...

vl = load ...

v3 = add vO0, v1(kill)

v4 = add vO(kill), v2(kill)

Baby's First Register Allocator

available = {r1, r2, ..., rN}
for each instruction:
for each use of V:
if use.kill:
avalilable += V.reg
for each definition V:
V.reg = pick_physreg(available)
avalilable -= V.reg

Handling Control Flow

Handling Control Flow

e Use classic dataflow algorithm to find liveness
e Blocks have live-in and live-out sets
e Still have kill flags as before

Interlude: Dominance and Liveness

e Adominates B if every path from the start to B goes through A
e SSA definitions always dominate their uses

Interlude: Dominance and Liveness

Handling Control Flow

for each block, ordered by dominance:
avallable = {r1, ..., rN}
foreach live-in value V:
avalilable -= V.reg
// main part same as before
for each instruction in block:

Phi Nodes?

e We may assign phi sources and destination to different registers
e Phinodes happen in parallel

Phi Nodes Example

a = ...
d = ...
if (...) {

e = a

c = d
} else {

e = .. y
) ¢ ° e 1 = . a, else: e 0)
. c = ¢(if: d, else: a)

= C

Phi Nodes Example, Continued

a:r0 = ...
d:r1 = ...
if (...) {
if:
} else {
else:
e 0:r1 = ...
}
e_1:r0 = o(if: a:r0, else: e_0:r1)
c:rl = @(1f: d:r1, else: a:r0)

Swap Instructions

e Many targets already have a suitable swap instruction

e Xortrick:
sz/\y
y =y "X
X =X Ny

Resolving Phi Nodes

e May have to split critical edges
e Create a transfer graph, resolve piece-by-piece

e Similarto SSA deconstruction
o See "Revisiting Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by Boissinot et.
al.

e Need to consider affinitiesin pick_physreg()

Live Range Splitting

Vector Registers

e Load/store series of registers
e Forexample:

// equivalent to:
// r0O = load ...
// r1 = load ... + 1
r[0:1] = load.v2 ...

store.v2 r[1:2] // store r1 and then r2

Vector Registers and SSA

e Need to add split/collect instructions
e Similarin spirit to phi nodes

v2 = collect vO, vIi
store.v2 v2,
v3 = load.v2 ...
vd, v5 = split v3

. = V4

. = V5

The Problem

v0 = load.v3 ...

vl, v2, v3 = split vO
= v1 (kill)
= v3 (kill)

v4d = load.v2 ...

The Problem

vO:r[0-2] = load.v3 ...

vli:rO, v2:r1, v3:r2 = split v0:r[0-2]
. = vl:r0 (kill)
. = v3:r2 (kill)

v4:??2? = load.v2 ...

The Solution: Live Range Splitting

vO:r[0-2] = load.v3 ...

vli:rO, v2:r1, v3:r2 = split vO
v1:r0 (kill)

. v3:r2 (kill)

r2 = ri
vd:r[0-1] = load.v2 ...

Live-Range Splitting: Worst-case Scenario

ro r1 r2 r3 r4 rN-2 rN-1 | rN
foo = load.v2 ... vO vO v1 v1 vM vM

Live Range Splitting and Control Flow

viirl = ...

if (...) A
r2 = rl1 // live-range split
} else {

}
. = vl (kill)

Live Range Splitting and Control Flow

e Need to repair SSA:
o Either create new Phis
o Orcopy the value back

Conclusion

e Simpleidea, complex implementation
e Code Quality depends entirely on Coalescing
e ->Workshop tomorrow at 16:35

Questions?

Live Range Splitting

e Three types of values:

o killed uses
o live-through
o definitions

e Insert parallel copies

e Firstsolution: sort/compact values
o live-through, then killed uses

