
SSA-based Register Allocation 
for GPU Architectures
Connor Abbott, Daniel Schürmann (Valve)



SSA Form

if (...) {
v1 = ...

} else {
v1 = ...

}

if (...) {
v1_0 = ...

} else {
v1_1 = ...

}
v1_2 = φ(v1_0, v1_1)

// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.



SSA Form: Deconstruction

if (...) {
v1_0 = ...
v1 = v1_0

} else {
v1_1 = ...
v1 = v1_1

}

if (...) {
v1_0 = ...

} else {
v1_1 = ...

}
v1_2 = φ(v1_0, v1_1)



Register Allocation

v0 = load ...
v1 = load ...
v2 = load ...
v3 = add v0, v1
v4 = add v3, v2

r0 = load ...
r1 = load ...
r2 = load ...
r0 = add r0, r1
r0 = add r0, r2



Register Allocation: Optimality

● As few copies as possible?
● Less and well-placed spill code?
● Using as few registers as possible?
● Avoid pipeline stalls (RAW, WAR, …)?



Traditional Register Allocation

● first deconstruct SSA, then run Register Allocation
● Existing approaches: graph-coloring, linear-scan



Traditional Register Allocation

● Coalescing and Register Allocation are decoupled
● Spilling and Register Allocation are done at once



SSA-Based Register Allocation

● "Optimal Register Allocation for SSA-form Programs in polynomial Time" by 
Sebastian Hack and Gerhard Goos

○ Not actually optimal!

● First run register allocation, then deconstruct SSA
● Phi nodes get registers assigned!



Register Allocation and SSA

● Coalescing is implicit
● Spilling can be decoupled



What about GPUs?



Dynamic register sharing

Register File

Wave 0

Wave 1

Wave 2
ALU

Memory



GPUs

● Might benefit from using less registers
● Spilling is expensive on GPUs
● -> SSA-based allocators are much better



The Algorithm



First Steps 

● Our initial architecture:
○ No branching (single basic block)
○ N registers, all exactly the same



Liveness and Kill Flags
v0 = load ...
v1 = load ...
v3 = add v0, v1(kill)
v4 = add v0(kill), v2(kill)



Baby's First Register Allocator

available = {r1, r2, ..., rN}
for each instruction:

for each use of V:
if use.kill:

available += V.reg
for each definition V:

V.reg = pick_physreg(available)
available -= V.reg



Handling Control Flow



Handling Control Flow

● Use classic dataflow algorithm to find liveness
● Blocks have live-in and live-out sets
● Still have kill flags as before



Interlude: Dominance and Liveness

● A dominates B if every path from the start to B goes through A
● SSA definitions always dominate their uses



Interlude: Dominance and Liveness

v1 = ...
...
if ...

... = v1

...
if ...

v1 = ...
...
if ...

... = v1 (kill) ... = v1
...
if ...

... = v1 (kill)



Handling Control Flow

for each block, ordered by dominance:
available = {r1, ..., rN}
foreach live-in value V:

available -= V.reg
// main part same as before
for each instruction in block:

...



Phi Nodes?

● We may assign phi sources and destination to different registers
● Phi nodes happen in parallel



Phi Nodes Example

a = ...
d = ...
if (...) {

e = a
c = d

} else {
e = ...
c = a

}
... = e
... = c

a = ...
d = ...
if (...) {

if:
} else {

else:
e_0 = ...

}
e_1 = φ(if: a, else: e_0)
c = φ(if: d, else: a)



Phi Nodes Example, Continued

a:r0 = ...
d:r1 = ...
if (...) {

if:
} else {

else:
e_0:r1 = ...

}
e_1:r0 = φ(if: a:r0, else: e_0:r1)
c:r1 = φ(if: d:r1, else: a:r0)



Swap Instructions

● Many targets already have a suitable swap instruction
● Xor trick:

x = x ^ y
y = y ^ x
x = x ^ y



Resolving Phi Nodes

● May have to split critical edges
● Create a transfer graph, resolve piece-by-piece
● Similar to SSA deconstruction

○ See "Revisiting Out-of-SSA Translation for Correctness, Code Quality, and Efficiency" by Boissinot et. 
al.

● Need to consider affinities in pick_physreg()



Live Range Splitting



Vector Registers

● Load/store series of registers
● For example:

// equivalent to:
// r0 = load ...
// r1 = load ... + 1
r[0:1] = load.v2 ...
...
store.v2 r[1:2] // store r1 and then r2



Vector Registers and SSA

● Need to add split/collect instructions

● Similar in spirit to phi nodes

v2 = collect v0, v1
store.v2 v2, ...
v3 = load.v2 ...
v4, v5 = split v3
... = v4
... = v5



The Problem

v0 = load.v3 ...
v1, v2, v3 = split v0
... = v1 (kill)
... = v3 (kill)
v4 = load.v2 ...



The Problem
r0 r1 r2
v0 v0 v0
v1 v2 v3

v2 v3
v2

v0:r[0-2] = load.v3 ...
v1:r0, v2:r1, v3:r2 = split v0:r[0-2]
... = v1:r0 (kill)
... = v3:r2 (kill)
v4:??? = load.v2 ...



The Solution: Live Range Splitting

v0:r[0-2] = load.v3 ...
v1:r0, v2:r1, v3:r2 = split v0
... = v1:r0 (kill)
... = v3:r2 (kill)
r2 = r1
v4:r[0-1] = load.v2 ...



Live-Range Splitting: Worst-case Scenario

foo = load.v2 ...
r0 r1 r2 r3 r4 ... rN-2 rN-1 rN

v0 v0 v1 v1 ... vM vM



Live Range Splitting and Control Flow

v1:r1 = ...
if (...) {

...
r2 = r1 // live-range split

} else {
...

}
... = v1 (kill)



Live Range Splitting and Control Flow

● Need to repair SSA:
○ Either create new Phis
○ Or copy the value back



Conclusion

● Simple idea, complex implementation
● Code Quality depends entirely on Coalescing
● -> Workshop tomorrow at 16:35

Questions?



Live Range Splitting

● Three types of values:
○ killed uses
○ live-through
○ definitions

● Insert parallel copies
● First solution: sort/compact values

○ live-through, then killed uses


