
Ray-tracing in Vulkan pt. 2

Jason Ekstrand, XDC 2021

A look at the Intel Vulkan ray-tracing implementation

2

Who am I?

▪ Name: Jason Ekstrand

▪ Employer: Intel

▪ First freedesktop.org commit: wayland/31511d0e dated Jan 11, 2013

▪ What I work on: Everything Intel but not OpenGL front-end

– src/intel/*

– src/compiler/nir

– src/compiler/spirv

– src/mesa/drivers/dri/i965

– src/gallium/drivers/iris

3

Last time, on

Ray-tracing in

Vulkan...

Shader calls

4

Shader calls in Vulkan

A quick run-down:

• All possible callable shaders are provided as part of one mega-pipeline

• All callable shaders are provided via Shader Binding Tables (SBTs)

• Filled with shader group handles queried from the pipeline

• A callable shader can be invoked from another shader via
OpExecuteCallableKHR

• Data is passed between shaders via variables decorated with the

CallableDataKHR storage class

• When the called shader completes, control returns to the calling shader

6

Bindless shaders in Intel HW

• COMPUTE_WALKER has a Bindless Thread Dispatch (BTD) mode

• Incompatible with shared memory (no real "local workgroup" concept)

• Causes it to generate a thread ID for each invocation

• Each callable shader is represented by a BINDLESS_SHADER_RECORD

• Contains the start address, SIMD width, and local data offset

• Bindless shaders are invoked using the BTD_SPAWN message

• Takes a pointer to a BINDLESS_SHADER_RECORD and a thread ID

• Threads are terminated with a BTD_SPAWN with the "retire" bit set

7

Bindless shaders in Intel HW

The bindless shaders themselves are pretty bare-bones:

• Thread ID

• Global data pointer (passed into BTD_SPAWN)

• Local data pointer (BSR address + local data offset in BSR)

It's up to you to build whatever you want out of these primitives

8

Mapping Vulkan to Intel hardware

• Hardware has no call stack or BTD_RETURN message

• We have to manage the stack manually:

• Spill and fill around shader calls

• Stash return BSR addresses and call parameters on the stack

• Shader calls use BTD_SPAWN to launch the child shader

• Return is implemented as BTD_SPAWN to launch the return shader

• Invokes a whole new shader (it can't just jump back)

9

void main() {
/* foo */
executeCallableEXT(/* child() */);
/* bar */
return; /* End the thread */

}

void child() {
/* baz */
return;

}

void main0() {
/* foo */
__push_stack();
__push_BTD_addr(/* main1() */);
__btd_spawn(/* child() */);

}

void main1() {
__pop_stack();
/* bar */
__btd_spawn(RETIRE);

}

void child() {
/* baz */
__btd_spawn(__pop_BTD_addr());

}

Mapping Vulkan to Intel hardware

In functional programming, this is called

Continuation-Passing Style (CPS)

10

What if the call happens inside a nested loop?

11

Mapping Vulkan to Intel hardware

• nir_lower_shader_calls() transforms the shader to continuation-passing style

• Requires two new NIR intrinsics:

• rt_execute_callable: Takes a SBT index and a pointer to the payload

• rt_resume: Marks a resume point

• Comes before any instructions in the resume shader that access the stack

(constants, undefs, etc. may come before it.)

• Both intrinsics have a pair of constants:

• Call index: Indicates which call in the original shader it pertains to

• Stack size: Size of the stack (in bytes) at that shader call

12

Mapping Vulkan to Intel hardware

• brw_nir_lower_rt_intrinsics() lowers the core NIR intrinsics to Intel ones

• rt_execute_callable:

• Place return shader BSR address and payload address on the stack

• Modify the per-thread stack stack offset (push the stack)

• Insert BTD_SPAWN to start the callable

• nir_jump_halt to the end in case we're inside a loop

• rt_resume:

• Read and modify the per-thread stack offset (pop the stack)

Callable Shader I/O

13

14

Callable shader I/O

Callable/calling shaders have three new types of I/O:

• CallableDataKHR:

• A block of data which can be passed to a callable shader.

• A pointer to this block is passed to OpExecuteCallableKHR.

15

Callable shader I/O

Callable/calling shaders have three new types of I/O:

• CallableDataKHR:

• IncomingCallableDataKHR:

• Only exists in the called shader

• Aliases the CallableData block passed to the OpExecuteCallableKHR

• Can be read to get data from the caller or written to pass data back.

16

Callable shader I/O

Callable/calling shaders have three new types of I/O:

• CallableDataKHR:

• IncomingCallableDataKHR:

• ShaderRecordBufferKHR:

• A tiny UBO placed after the shader handle in the SBT

17

Callable shader I/O lowering

First, each variable is lowered:

• CallableDataKHR:

• Converted to nir_var_shader_temp

• IncomingCallableDataKHR:

• Each var deref is replaced with the payload pointer stored on the stack

• ShaderRecordBufferKHR:

• Each var deref is replaced with the local data pointer in the payload

Then run nir_lower_explicit_io()

Ray-tracing

18

19

Ray-tracing

Ray-tracing works the same as callable shaders if you know the mappings:

• Ray-gen -> callable or compute shader depending on $DETAILS

• Any-hit, closest-hit, miss, and intersection shaders -> callable (bindless)

• RayPayloadKHR -> CallableDataKHR

• IncomingRayPayloadKHR -> IncomingCallableDataKHR

• OpTraceRayKHR sort-of maps to OpExecuteCallableKHR with extra stuff

20

Ray-gen shaders

• Ray-gen shaders are specified through the API as a 1-element SBT

• Dispatched with BTD_SPAWN like any other bindles shader

• vkCmdTraceRaysKHR() launches a "trampoline" compute shader:

• Loads the ray-gen handle

• Sets up the per-thread scratch space

• Launches the ray-gen shader with BTD_SPAWN

• If the pipeline contains only a few ray-gen, the trampoline can be avoided

21

OpTraceRay

• Similar to OpExecuteCallable

• Same shader splitting and conversion to continuation-passing style

• Same I/O lowering

• Except it communicates with the ray-tracing hardware:

• Sets up the initial HW RayData structure used for tracing

• Acts as an interator for the ray-tracing operation

• Points to the root of the BVH

• Contains ray origin/direction, hit shader tables, miss shader pointer, etc.

• Calls TRACE_RAY to invoke the ray-tracing hardware

22

Hit and miss shaders

• Hit and miss shaders are just callable shaders

• Built-ins such as RayOriginKHR come from inspecting the RayData iterator

• Built-ins such as RayGeometryIndexKHR come directly from the BVH

• Any-hit shaders don't normally return up the stack

• The ray-tracing hardware may call any number of them

• They may return if OpTerminateRayKHR is called

• Closest-hit and miss shaders return up the stack

• A "trivial return" shader which is invoked if no miss or closest-hit

23

Intersection shaders

• Intersection shaders don't exist, not really....

• Intersection shaders are just any-hit shaders for AABBs

• OpReportIntersection sets up a hit and calls the client any-hit shader

• Depending on the results of any-hit shaders, it reports or ignores the hit

• Any-hit shaders are inlined into the corresponding intersection shader

• Vulkan requires they always be paired

• brw_nir_lower_intersection_shader()

BVH Building

25

What is a BVH?

26

Root
Level 1

Level 2

27

Root
Level 1

Level 2

28

Root
Level 1

Level 2

29

CPU building with Embree

• For driver bring-up, we built our BVHs on the CPU with Embree

• Embree is an open-source ray-tracing framework from Intel:

• https://github.com/embree

• CPU BVH building is a three-step process from the driver PoV:

• Parse Vulkan BVH data into boudning boxes

• Invoke Embree to sort it into a BVH

• Read the Embree BVH and write out the HW BVH format

https://github.com/embree/embree

30

CPU building with Embree

• CPU BVH building has a lot of advantages for driver bring-up:

• Easier to see what's going on and debug

• Lets you bring up ray-tracing pipelines and GPU BVH building separately

• GPU BVH building on a HW simulator takes forever

• Current implementation isn't production-ready

• Embree spawns threads behind the client's back

• Doesn't tie into VK_KHR_deferred_operation

• Not optimized

No one cares about CPU builds;

DXR doesn't have them

31

We're not going to talk about BVH

building algorithms

32

33

Instead, we'll focus on dispatching

BVH building kernels

34

BVH building kernels

• BVH building kernels are written in OpenCL C

• Makes them easier to develop/debug

• Same kernels used for Vulkan and D3D12

• Compiled at build-time and embedded in the drivery binary

• We wrote a little intel_clc build tool

• Goes OpenCL C -> SPIR-V -> NIR -> intel back-end

• Based on the OpenCL work from Karol, Jesse, Boris, etc.

• Vulkan driver now sort-of understands the OpenCL dispatch model

35

BVH building Meta-kernels

• A single BVH build requires multiple kernels:

• Init, parse API data, sorting algorithms, BVH output

• May be dispatched with different workgroup sizes

• Dispatch sizes, number of dispatches, etc. may not be static

• vkCmdBuildAccelerationStructuresIndirectKHR

36

BVH building Meta-kernels

• A single BVH build requires multiple kernels:

• We developed a new meta-kernel language called GRL

• Executes on the command streamer

• Read/write values to/from memory

• Basic arithmetic

• Control-flow

• Can launch a kernel (possibly with indirect dispatch)

37

BVH building Meta-kernels

• A single BVH build requires multiple kernels:

• We developed a new meta-kernel language called GRL

• GRL parser currently written in Python

• Basic parser using PLY (Python Lex-Yacc)

• Basic optimizer (mostly copy-prop and DCE)

• Outputs C with mi_builder commands

38

BVH Building Meta-meta-kernels

• Someone has to figure out how to launch meta-kernels:

• Select BVH building algorithm

• Compute sizes and allocate memory

• Kernels and meta-kernels have inputs and need scratch memory

• Launch the right meta-kernels in the right order

• It's not just one meta-kernel per build. That would be too easy!

39

Are we having fun yet?

Alt-text: "This is the reference implementation of the self-referential joke."

https://xkcd.com/917/

BVH Building Meta-meta-meta-kernels?

41

Open Questions

• Can we better share code with Windows?

• We do share the OpenCL C kernel source and GRL files

• Different GRL file parsers and meta-kernel launch code:

• Windows is C++-based with a big templated launcher system

• Effectively duplicates mi_builder but more complex

• I wanted something simpler which re-used mi_builder

• Every time we pull new OpenCL C and GRL files, we get divergence

• This is bad....

42

Open Questions

• Can we better share code with Windows?

• Can we put more in the GRL files themselves?

• Might let us share memory allocation and launch algorithms

• Would come at the cost of GRL getting more complex

43

Open Questions

• Can we better share code with Windows?

• Can we put more in the GRL files themselves?

• Can we share code with RADV?

• Ideally, we'd like to, obviously

• Can AMD do the command streamer stuff GRL requires?

• How do we abstract binary BVH formats?

• Should RADV just use Intel BVHs?

• AMD's hardware design probably makes this possible

44

Open Questions

• Can we better share code with Windows?

• Can we put more in the GRL files themselves?

• Can we share code with RADV?

• Should we compile GRL files to NIR?

• Have a NIR back-end that generates MI commands via mi_builder

• I really, really, really wish this were a joke....

• If we're sharing with RADV, it might be a good idea

Questions?

The Intel open-source Linux 3D driver team is hiring!

Talk to me (jekstrand) on IRC if you're interested.

