
Dissecting and fixing
issues in VK driver

with RenderDoc
Danylo Piliaiev

XDC 2021

1

About me
• Worked on mobile video games

• Debugging unruly games since 2018

• At Igalia since November 2020

• Currently improving open source VK driver for Adreno

- Turnip

• My blog: blogs.igalia.com/dpiliaiev

https://blogs.igalia.com/dpiliaiev/
https://blogs.igalia.com/dpiliaiev/

The problem

Categorization
• The biggest concern is a temporal stability of issues

◦ Stable - easy to capture and easy to debug

◦ Unstable - randomly appears and hard to capture

• Orthogonal to it are

◦ Incorrect colors

◦ Deformed/Missing geometry

◦ Hangs

◦ Crashes

Causes
• Undefined behavior of an application

• Shader mis-compilation (in NIR or in a backend)

• Missed/Wrong update of GPU state

• Hardware bug

Practical example

Video of practical
example

Wrongly compiled
fragment

_243 = clamp(_243, 0.0, 1.0);

_279 = clamp(_279, 0.0, 1.0);

float _290;

if (_72.x) {

 _290 = _279;

} else {

 _290 = _243;

}

color0 = vec4(_290);

Bad GPU assembly

mad.f32 r0.z, c0.y, r0.x, c6.w

sqrt r0.y, r0.y

mul.f r0.x, r1.y, c1.z

(ss)(nop2) mad.f32 r1.z, c6.x, r0.y, c6.y

(nop3) cmps.f.ge r0.y, r0.x, r1.w

(sat)(nop3) sel.b32 r0.w, r0.z, r0.y, r1.z

Good GPU assembly

(sat)mad.f32 r0.z, c0.y, r0.x, c6.w

sqrt r0.y, r0.y

(ss)(sat)mad.f32 r1.z, c6.x, r0.y, c6.y

(nop2) mul.f r0.y, r1.y, c1.z

add.f r0.x, r0.z, r1.z

(nop3) cmps.f.ge r0.w, r0.y, r1.w

cov.u r1.w, r0.w

(rpt2)nop

(nop3) add.f r0.w, r0.x, r1.w

What to do?
• Going line by line both assemblies look correct

• The only suspicious instruction is:

(sat)(nop3) sel.b32 r0.w, r0.z, r0.y, r1.z

• Could it be that (sat) modifier doesn't work?

• Manually edit the assembly to test it!

Editing GPU assembly
• Unfortunately we cannot edit the assembly through

RenderDoc, there is no Vulkan extension for this =(

◦ Could we make one?

• Some drivers including Turnip have the ability to

replace shader assembly by its hash:

◦ For Turnip/Freedreno -

IR3_SHADER_OVERRIDE_PATH

◦ For Intel's drivers -

INTEL_SHADER_ASM_READ_PATH

◦ For radeonsi - RADEON_REPLACE_SHADERS

Conclusion
• Removing the saturation modifier doesn't change

anything

• Moving it to the instructions which produced the

arguments for the sel resolves the issue

• Verdict: saturation is not supported for sel

instruction

• Fixed in

MR#9666 "ir3: disallow .sat on SEL instructions"

https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9666
https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/9666

Useful RenderDoc
capabilities

• Viewing and being able to export any input in the

pipeline

• All of the pipeline state is visible

• All varyings between shader stages are visible, thanks

to the most cursed extension -

VK_EXT_transform_feedback

• Software shader debugger

• Printf support in shaders

• Python API for automation and plugins!

Pixel history
• Pixel history allows to quickly find which draw call

wrote the fragment to the FBO

Draw call overlays

Limitations
• Synchronization issues tend go away in the capture

• Impossible to inspect inter-frame issues

• Capturing a hang could be tricky or impossible

• You cannot edit shader inputs or any Vulkan call

parameters

• Requires a lot of RAM for capture, which may not be

there on ARM devices

Transferring captures
• Captures aren't compatible between different GPU

vendors, sometimes between GPU generations, and

even driver versions

• It poses an issue in the cases where we cannot make

a capture on the target device:

◦ Due to a hang

◦ Application doesn't run on the device

◦ Target device doesn't have enough memory

Making a capture
• If the issue appears only for a few frames

◦ Make a trace with GFXReconstruct

◦ Replay it frame by frame and find the one you

want

◦ Tell RenderDoc which frame to capture

• If there is a hang causing capture failure

◦ Make hang to go away by any means

◦ Make a capture

Validation layers
• Validation layers are the easiest way to find Vulkan

misuse

• Not every error or warning corresponds to a real issue

• Some useful validations are in the "warning" category

- make sure to enable it!

• Enable GPU-Assisted validation to catch many of out-

of-bounds issues in shaders

Driver debug options
• Debug options to speed up your investigation

◦ Synchronize every call

◦ Re-emit state for every draw call

◦ Force spilling for all shaders

◦ Substitution of shader assembly

◦ Selective disabling complex optimizations

After inspecting the frame
• If you know the problematic draw call:

◦ It's impossible to just export it to C code
GFXReconstruct is planning to support exporting a trace as a compilable
code

◦ It's easy* to manually create an Amber test

mimicking the call - you could export all

buffers/textures from RenderDoc!

◦ Still, use this as a last resort

Recently I had to do this for an issue with tesselation

shader in GTA V on Turnip

It was impossible even to make a RenderDoc capture

to inspect the draw call due to the lack of RAM

The draw call extracted as an Amber test

After that it was much easier to debug

Amber reproducer
BUFFER indices_buf DATA_TYPE uint32 SIZE 2808 FILE TEXT indices.txt

BUFFER vertex_buf DATA_TYPE int8 SIZE 38556 FILE BINARY vertex_9978.bin

BUFFER cb1 DATA_TYPE int8 SIZE 1048576 FILE BINARY ubo_16835.bin

...

PIPELINE graphics test_pipeline

 ATTACH vert_shader

 ...

 INDEX_DATA indices_buf

 VERTEX_DATA vertex_buf LOCATION 0 RATE vertex FORMAT R32G32B32_SFLOAT OFFSET 0 STRIDE 36

 ...

 BIND BUFFER cb1 AS uniform_dynamic DESCRIPTOR_SET 0 BINDING 0 OFFSET 0 DESCRIPTOR_OFFSET 442112

 BIND BUFFER cb3 AS uniform_dynamic DESCRIPTOR_SET 0 BINDING 1 OFFSET 0 DESCRIPTOR_OFFSET 9216

 BIND BUFFER cb11 AS uniform_dynamic DESCRIPTOR_SET 0 BINDING 2 OFFSET 0 DESCRIPTOR_OFFSET 1024

 ...

Other methods to try
• For hangs - inspecting the GPU state dumped on

hang

• For shader yielding unexpected result - instrument it

to see intermediate results on GPU
Not available on open-source drivers, but I made a prototype for Turnip

• Compare emitted states to proprietary driver if there

is any

The End
Any questions?

